
CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D6131-21270

Software Technology for Adaptable,
Reliable Systems (STARS)

Submitted to:
Electronic Systems Division:AD-A240 479 Air Force Systems Command, USAF: ELECTE7

lililtIUUilllhIIllflWlilI Hanscom AFB. [VIA 01731 5000: SEPI 1991

Contract No: C
F19628-88-D-0028

CDRL 01270
inter-Tool Communication Facility

(ITCF) Final Report

February 16, 1990

Prepared by:

Soffech, Inc
San Diego, California

Submitted by:
The Boeing Company -

Defense and Space Group

Systems and Software Engineering
P.O. Box 3999 0

Seattle, Washington 98124 I --

Approved for public release - distribution is unlimited

91 9 9 044
Inter-lool ('om niication Final Report

I)13 -_ 1270

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE OM Form 4-10
?~''.'. i oj Coe4 ns-n n maso m tsoswo r I m Pe resioam.tciJ; tw = .X ex ts in;L cata ~ swo.awnka'~msfltarm he cam naec. ax~
mmpeln: anlm-) r*t ~. o .*rr.31 ~MCor' ~ es.n iiw eta y o , a pn! 06w a soet cotedmo o! nbnoaWovr. jr~p 0gom b 6w~n hsbxew,. £WahqW H62g

SDveiot6J, r OrMQ*alIos a1Fv,o rs 2'e~Oy a. 124. kingtm VA22O--4or.av tr O6w e 065 auo ene- ano BuqPawwakI Rt(Tc Prow- 1070".1 SS'. viasvt

I. AGENCY USE ONLY (Li, v, blaM4 Z REPORT DATE I. REPORT TYPE AND DATES COVERED

.1jTLE AND SUBITLE S. _ r- EB 9 FUNDING NUMBERS

-Inter-Tool Communication Facility (ITCF) Final-Report C: F19628-88-D-0028

E. AUTHOn:S)

Carl -Hitchon, SofTech Inc. TA: BR-67

7. PERFORMING ORGATNZAflONNAME(S) ANDI ADRESS(ES) & PERFORMNG ORGAN2ATION

The Boeing Company REPORT NUMBER

Boeing Aerospace and Electronics Division
Systems and Software Engineering D-613-21270
P.O. Box 3999
Seattle, Washington 98124

9. SPONSORNGIMON TORING AGENCY NAMAE(S) AND ADORESS(ES) lB. SPONSORING I MOITORING
AGENCY REPORT NUMBER

,ESD/AVS(Bldg. 17-04
Room 113
Hanscom Air Force Base, 01731 -5000

11. SUPPLEMENTARY NO7ES

12L D!STRJBUTION.' AVAiLABILITY STATEMENT i2t. DISTRIBUTION CODE - -

Approved for public release -distribution unlimited. A

13. ABSTRACT zMIms=20 words)

The Inter-Tool communication Facility (ITCF) was specified under STARS Task Qil. A
VAX/CAIS-A implementation of the core ITCF facilites, a demonstration of the ITCF
using existing tools, and this final report were completed under STARS Task BR67.
This report describes the ITCF, the design, the implementation, and the demonstration
performed. More detailed documentation and information about the ITCF and the
demonstration tools can be found in the ITCF Version Description and in the source
code for the ITOF packages and for demonstration tools. All ITCF deliverables,
inciling source code and reports are currently on the Boeing MDSC VAX under the
root directory.

14.SUBJECT TERMS. IS. NUMBER OF PAGES

Keywords: STARS 32
ITOF 16.PRICE CODE

I7. SECURITY CLASSIFICATIOh 1S. SECURITY CLASSIFICAT1ON 1B. SECURITY CLASSIFICATION 20. LIMIATION OF ABSTRACT
OF REPO;T OF THIS PAGE OFABSTRACT

Unclassified Unclassified Unclassified None
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Ptescnbed by ANSI Sid 239-18
298-102

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 l)61.3-2127(0

Inter-Tool Communication Facility (ITCF) Final Report

Prepared by
P r. Carl. itqlon, SofTech Inc. cl

Chief ro-rammer (BR67)
Inter-Tool Communication

Reviewed by
Jn ms E. King

J. m Architect

Reviewed by
Johh Neorr
Development Manager

Approved by
William M. Hodges
STARS Program Manag~er

Inter-Tool CommUflidn inral RlOrt
)'I 3-21270

2

CDRL 0i270 The BOEING Company CDRL 01270
TASK BR67)613-21270

TABI.E 01: ('ONTINTS'-

Section 1

IN 'RIO 1))UCTIO N ... 5

Section 2

(iN'RAI, ISCII'ON 6

Section 3

'r.('l: (O N '.PTS... .. 7

3.1 (lients and (:onnection Centers
3.2 Stream s ... 7

Scction 4

Implementation OverviewS

Section 5

I)I:.SIGN PROBILEIMS ANI) SOLUTIONS 9

5.1 Concurrent Access to Streams 9
5.1. 1 Using Ada Rendezvous 9
5.1.2 Using Monitors...................................... 10
5.1.3 Monitor Im plementation 10

5.2 Stream (opying . .. II

Scction 6

(Ii.'\N(,I"S "() 1il; ()RI(;INAl I) .I(;N 12

inter-Toeol (Communication Final Repo'rt
I) I3 -2'127()

CDRL 01270 The BOEINVG Company CDRL 01270
TASK BR67 D613-21270)

TAB! "". 01: CONT'ENTS Icontilnuedl

Section 7

I)BMONSTRATION OF" Till.1 ITC] 13

7.1 Tool Selection ... 3
7.2 1ool A daptation .. 14
7.3 'Fool Adaptation Problems 15
7.4 1ool Adaptation I'ffort 5
7.5 Instantiation or the l)cmonstration Connection Center 16
7.6)emonstration Pcrlormancc Results 16
7.7 Runnim, the Dernonstation 17

Section 8

UNIMPIA.'I'NT 'I) I:I-ATURS Is

Section 9

(ONCI.USIONS AND I.ISSONS IL'ARNII) 19

Section 10

FUTURE APPLI.CATION S 21

4,I AOeaioa For
OT3 QRjLI L0

IluS*%eIod Q !
Jus t Ifloat i

Distribu-tsn/
Availability Ca60

Vail a*;[/or

:Dibt / .±.jj

Inwr Fool (% "1m tni icaion l"inal ReporI
I) 13 -_"127() 4

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D)61.3-21270

The Inter-loot C:ommnication F'acility (FEICI:) -wits specified -un11der STARS Task
Ql 1. A V,\X/CA IS-A implementation or the core ITC*(I-' facilities, a demonstrationl
ol the 11(1 using existing tools, and this final report were completed undler STARS
TIask 13167. This reports describes the IT, tle design, the imnplementaltion: and the
demonstration performed. IMvore detailed documentation and information about the

111and the demonstration tool% can be found in the U'(II Version D)escription and
ini the source code for the lITCF packages and for demonstration tools. All 1'1CI*
deliverables including source code and reports are currently on the Boeing I)SC
VAX under the root directory:

SYS$ USIR7j SCIF] £:l I l.USI,-IRS.SA BB UI I L..ITCF1:

The bile Contained therein describing the directory oreanm,.ation of thle deliverables is%:

jSOF -('I II. .USERS.SAIMiUIll.l(iITr IIRIN)ECRITO.IS

I nter-l'l o1 OII ill iewiion F inal Rl~lo~rl
D61~3-21270 5

CDRL 01270 The BOEING Company CDRL 01270-
TASK BR67 1)600-21270

2. GE~NERAL. D)ESCRIPTION

The ftollowing io. it generalI de.scription of the ITCF'. More details can be found in the
fil I i ~ rin~seito~d and in the package specifications and bodies for the
delivered software.

The 1*1*(:I permit., concurrently executing tools to cooperate in an integrated- manner
fille maiintaining their high deg~ree of' modularity and functional independerice. I'Fhe

1'*'*offer.% a layered architecture of communication services which may be adapted t)
meet the requirements of a variety of tool integration strategies. The principle
conceptual layers are streams. stream protocol., and messages.

The TIVF services manage the cornpllex details of inter-tool communication and
provide conceptually simple and ea y to use interface.- to the tool writer. These service.%
-facilitate the integration of tool.* with relatively modest effort.. including existing tool..
which were not originally desiiined to use the fTVl: packages.

The 1U1CI- i.s intended to transfer dita wvhich is. primarily transient in nature is opposed
to datat which is permanently stored in the environment data base. Permanent data
should be handled throuah the envii onment object management system. Nevertheles,
simple tools can be implemented. using the ITUI* ptac kagies. which allow% Uhe conlnection
of other tools to files, (including (Ievice~s) as% sources, and ,Inks for inter-tool diata.

The FIEis also intended to support communication b~etweenl tool,% executing, in,
different CA IS-A environments that are connected by a gateway. I however, this
feature was not implemented undler task IWO6.

I nre.r-Tool C ommunicatlion I'inml Report

CDRL 0 1270 The BOEING Company , !L01270
TASK BR67 D)61.3-2 1270

3 ,T11: CONCEP'TS

TFhe Underlying concept,, of* the ITO* have been derived from it number of sources.
These include UNIX pipes, plumbing fixtures and filters; the CAIS-AJ() Connection
Model: and 'various Remote Procedure (Call (RPC) facilities and streamn manipulation
packages. The 1 1 LI .1 environment integration mechanis-m, -described by StevenRis
or Brown University, was particularly influential.

3.1 Clients and Connection Centers

T-he flus% of ITOC operattions are server processes, called connection centers. A stiven
:connection center may have one or more clients;. A client may be a tool (i.e. at
pr~cess,), or at gate%%ay. A\ gateway client represents other clients, and/or connection
centers onl a remote host system. (Clients communicate with oib anothe~r via the
connection center.

The first step in using the 1T(T* is the creation of at connection center. After the center
has% been created. clients, nia be connected to the center. Connection of at client to at
connection center establishes at coimunications channel bectween the client and the
center. Th% channel is called at connection. Clients may be connected or di.Sconne1cted
at any time. Only client.s of the same center ri~ay comMmudic il1tieathr
I *.c client may be connected to only one center at a g~iven tine. .(lifents1 may
Communicate through the connection center concurrently.

31.2 Streams.

AtL the lowest conceptual layer of the ITO", dlata is passed through the connection
center in the form of streams%. A\ streamn is simply at sequence of data (or indefinite
length) generated by at client. A client sends data by writing into at stream. A fclient
receives dat [Iy readinit from at stream.

The f~low.% of data in at streitm is uni-directional. When bi-directional flow. is, required.
ai reverse streamr called at reply stream may be used. A client protess., may us-e mnultiple
streams cocrenl.The flowv of data in each stream is independent of other

,unrelatedl streams.

Streams% may be used hprcese for direct communication wvithout the usec of at
connection center. C onnection center facilities% are built on top of the lwr-level
stIream %cr%,icq:.. Streams maty also be used locally within at proLCss for1 COMflhiifllii n
bet,%een ta~sk.s %ithout the tnerhecad associated With sending sticearns through a ieart
connection center proces.%

Inter-T'ool (Commnunication F~inal R~eport
1)613-2 1 270)

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D)613-21270)

4. Implementation Overview

Thc core facilities of the lTC1T were implemented on the MI)SC VAX machine usimt
VAXAdat 2.01 and Version 4.5 of the CAIS-A implementation. The lTCl' services are
prw~idecd iv. a collection of packages containing! interface.% which may be called by
CA\IS tools.

Theli principal packagws implemented are:

Stream-1O - Supports all low-level stream operations including interprocess
Communication.

Text-Sti-eani10 - Provide-s the interfaces, of Ada TIextl() for readinir and
writinu stream data.

Connection - Pro-ides interfacesz that client tool., call to interface with a
connection center.

Connection-.Center - A gen~eric package which supports the instantiation of user
defined connection center..

Distribution - A generic package which perform-, ieneral disitrih'ution list
ma~nagiement fu~nctions I or instantiations of -packag!e Coninection-..(*en ter.

Monitor - A io%% - level package.% which is used to manag!e concurrent aceess to
stream. *lhis i.s an internal IT67 package which contains-.no tool interfaces.

flter-Tool C ommnunication F~inal Report
D6 11,-21270

CDRL 01270 The BOEINIG Company CDRL 01270
TASK BR67 D)613-2 1270

Aspects- k,. the ITUI implementation which presented sig~nificant technical challenge.,
uecre tlic manageement of concurrent access to streams aind the interproce,:_ connection
resources%. and the mechanismn to support stream copying. Stream copying is. a
funld.amental ITCF conICept I) substantial power in affectino the distribution of streams,
and thle composition 01 streams from other sras

5.1 Concurrent Access to Streams

T wo problems% needed ito be addressed in the handling of concurrent access.. '1 hle firmt
.d it) develop it conceptual model that wouldmaeacrctipmnaio

conceptually manageale. The s-econd prob~lem was to assure that manag~ement or
concurrent access would lbe reasonaly efficient.

5.1.1 Usine Ada Rendezvous

Initial attempt., ito ichiew a1 -oniceptual model for concurrent access-- wxere focused omn
thle dirCt u.%% of the Ada rendezvous, model. One question %vas how tasking~ should he
applied. The Adat rendczvous, model is generally applied by identifying a object to
,which conicurrent acce.-ws may occur and then applyin- a task to manage the oibiect. All

acesto thle object is then accomiplished through calling entries ito that &~s~I Hence.
one attempt ito the solve concurrent alccess problems in tile 11 Cl7- was to have each
stream be managed b'% a sepatrate task. Tiiii approach was% eventually rejected becausc
it would rcqluirc a large number of tasks. %training~ systemn resources. Also, it was. not
Jear liou stream topying could bt. implemented. Streamn copying would either require
I) stream - task. to call other Mtream - task-,. thereby iakinii themselvesz unavailable for
saimf'ini! other concurrent acesto thle stream. or 2) the creation of addition
copy -tas-ks.- thai would simply read data from one stream-task and write-data to
another. While %uch tasks, could be recycled, thus reducing thle overall overhead of
frequent task creation. the number of tasks that would be required was still of some
concern.

Another approach it) using r,,ideI-tous, was w4 define a %ingle task which provides, all
cevcs 'm all stream. *lia task would secrialize access ito all stream operation.

Whilc this, approach1 wLould -greatly reduc thle number of tasks- required. it had %OMIL
disdvatags.One dis'advantinx was Ilthat all stream function% would have it) bc

pio~ided in) a1 sinle laruzc task body. In order to modularize these function-,. call>
wLould have to be used in Otc A (1 IT statements. of thi.% takody addinl! additional
overhead (which could possibly be redluced throughi thle use of PRAGNIA IN I .IENI I.
Also, how to interface with tither ta:ks which maina-etasiio of streamns over
connections w-as not clear.

While these,% problemis probahly could be overcome, there was% one problem that wxs
sharcd by all approachcs% that used Adat rendlezvous exciusiely: ewver operation on at

Inter-Tool (ornmunication Final Report

CDRL 01270 The BOEING Coinpany CDRL 01270
TASK BR67 . .613-2127.K

stream would involve four ta.switches. Task switclunglhas certain unavoidable
overhead even in the best Ada runtime implemertations. All registers must be stored
and loaded, and the scheduling algorithm must be invoked. "Ais would imply that an
Operation which is to write a single byte to a stiream could lave an overhead on the
order of a hundred instructiois . This overhead cotld be significantly reduced by using
buffering to minimi/ze the number of rendezvous rjq~uired to trinsmit-a given amount of
data. However, this would only help in the Put and Gt functions in package
StreanijO. The overhead for all other funetiohs *,ould not bereducel.

5.1.2 Using M{onitors . * -. - -

An alternative approach was to apply Hloare's Mnitor concej. inIhis approach, the
set of all streams is considered a shared rcsouiee to whichaccess is controi via a
monitor entity. Wheniever a task nees to operat on a streai, it must first enter the-
oiomto.. Moutnor entry i queued io that onliy one task can e c ,ute wit te moito.

at a lime. If the operation ci.not be completed immediately tfor example an atempt
to read it stream which is temporari!y emrpty), the task iay suspend itsilf on a
c:ondition variable until whe operation can be completed. When a task suspends itself
within ai monitor, 'anothe tas.,,: is allowed to enter. l:vcntuallv a task will enter which
writes to the stream and signels the condition variable upon %thich the suspended task
is waiting.

5.1.3 Monitor Implementation

The monitor framework wa:- very helpful in sorting out the conturrLnt access problems.
Ilowciver, since Ada does not directly support m6nitors, it wts nece:,sary to consider
how they xtould be implemented. Waiting ,nu st occur when a a-k attcmpLs to enter a
monitor, if another Iask i6, ,ng the monitor, and ,,hen a taskus'. be suspended on a
condition variable. In Ada, the oniy way lor a takk to wait util some event occurs isthrough a I-all to a task entry. A ver- s imple and'direct apprdach to the monitor entry

problem is to use a simple i.ask which alternately accepts aft entry call to enter the
monit-or and an eanlrv call to leave the monitor. i'be major drA 4back to this Solution is
that the cylc of entering and ieaving the monitor would' -eiqure two rendezvous
involviig eigeli task switches..

I lowever, an important observation is that, in niost cases, W 'hin a task alieuptss to
entcr the monitor there will be no task exeuting in the monito. Thus, in most cases a
rendet.-,ous shoild be unnecessar.. In the ITCI iraplementatiLn, a counter which can
be ",-rerented/dec.elenhtd and tested as an azomi:c operatibn is u*.ctl ito determine
whether a task is currently exet uting within the monitor. A rendezvous is used to
.,u:,pend an entering task oiny if the result of incrementing the counter indicates that
another task is. already execuling inside the monitor. This strtegy reduces the

overhead of monitor entry and exit to a few instruclions, :versus the hundreds of
instructions that would be executed using rendezvous exclusively.

Inter-Tool Communication Final Repotk
D613-21270 10

i)CT 11 "91 16:06 206 773 4,946 PAGE.c1

.CDRL 01270 The BOEING Co~npany CDRIL 01270O
TASK BR67 D613-21270.

The techniique'usedi could be criticized for not 1 einlg pure Ada. However, the only
imp~lemencftation dependenqc introduced by this '.Thnique is th-C imjplciflentatiofl of the,
atomic counter on the host. Mos, proessors hiavq sucli an instruction, Others have an
instruction (such as a test and set) which can bc bsed to syntljesize anl atomnic counter.
In the case of the VAX, the VAXAda comrpiler hits a built-in .proce~lure for an atomic
counter.' For other hiosts or compiling systems, tt may bei~sa to wieasml
assemibly laniguage ,uniit.

]n any case, the dependency is isolatod 'within a sniall p~ackage called
ProtectedLCountcr. There islio dependency onl thc Ada run-t ie im~plementation, All
tasking operations arc still handled inl pure Ada.

5.2 Str'eam C.opying

Several false starts wei c required in the dlcsign oil stream ;op 'ing before a s;atisfactory
solution was arri~ed at. The final solution was IQi place an it') representing the "tail"
(i.e. thle remainder) of a copied stream inl the iAem queue o ! every target stream to
which the stream is copied. These tails are kept Oil a list. ;'B.ach timne another data
buffer is added to the source stream, an ilem rel Ierencing 1.11t buffer is inserted into
each larget stream immiediately ahecad of each tall (in thle lisj of tails) for the copied
Streamn. T'hi effectively Copies the datal into each tar'get streaznat the appropriate point
within each ofI thoste streams. When the copied streamn is, cosc , thle tails are dliscarded
sin~ce no further insertions of data from thl- copieC stream are ilecessary.

In applicationis involving large streams, the amount of data" which is buffered in a
striean must he lbotinded to prevent storage resourLQes- Ironl bIN1g exhlakistd. liandlin
ot bounded buffeiring in streams was roblemiatic due to the c(pying facility. Initial, it
was not clear how to account. for buffered data wich has beell copied. A's the design
of' thle copy capability progressed, it was decided that bulT~rs would be copied by
reference rather than by value for efficiency ronsons. Ihe acc*ounting problem of
JI14Lmng bouiids on bufferinig was lten solved by d~signatling thi stream to which data is,
originally written as the owner of that data. Ththu , copying a treainA to a stream B
has no affect oil t10 amlount of (late, that can be wfitteii diretll to stream B. A shared
buffer is, only recleased aftor every etfierence to it ill anly strean lias b)een deleted. Thus,
write operkations to stream A which has been-1 epi.Cd to strean:T 13 may be blockt~d wntil
data is read from both streams A and stream '13.

Inter-Tool C7ommunication F inal Repolt

D613-21270) I
OCT 11 '91 16:07 206 773 4j46 PAGE.002

CDRL 01270 The BOEING Comipany CDRL 0 1270
TASK BR67 D)61 3-21270

6. CI-IANGE-S TOTI-IIL' ORIGINAL DESIGN

17ew changes wl.re made to the ITlCI' specif'ications during the implementation.
IHowever, one significant change wats at redistribution of' the functionality provided b~y
thle packages Stream-1O and StrcarnServicces. D~uring the implementation it was.,
realized that the underlying streamn services (w'hicli were not detailed inl thle
specification) could be useful outside the context ol'(TC connection centers. TVhti,,
interlaces originally intended to be hiddLCn1 inl the implementation of' Streitm-Servi cc.,
were instead made a visible part of package Stream-1O. Tlhus, package Streallmi()
now provides full access to low-level stream functionality. P~ackage Streitm-.Services
was eliminated.

I Iigher-lc-vel functionality. associated specifically with the use of' a connection center.
was removed from package Streanmf() and placed in package Connection which
already included interfaces, through which client processes communicate with at
connection center. (One regret here isN thle package name Connection which \kould
more appropriately be ('enteriO0. TI his could be fixed in a future version.) T1 he
rearrangement of' these services improves, I'f*('F'- modularity since general-purpo~se
streamn services (provided by Stream-IO) canl now be used without thle overhecad of' also
Ibilding-in connection center support.

In110e'001o ('0,m iiiunlica tionl i nal I eport
I) 613 -211271)1

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 '13613-21270

7. I)'MONSTRATION OF THI I''(F

The selection of a demonstration for the IT'CF was a compromise between the dc.sirc to
demonstrate a meaningful, non-trivial I'CF application and the need to devote most of
the available time ito the implementation of the IT'I". A meaninglul demonstration
would be one in which the f unctionality of the existing tools is integrated. The
repository containing STARS and SIMT", tools was considered as the primary source
of existing tools. In ordcr to minimize th. risk of demonstration problems, attention
was focucd on relatively simple, small tools. A demonstration of the ability to
integrate tools wa., of more interest than the tools themselves. l'or example, integration
of the IT(f' with ACE (Ada Command Environment) was considered but wits not
undertaken, primarily because ACE is large body ol softyare which would have had to
be ported from a UNIX environment to (.AIS-A on a VAX. Also, the integration of
ITCF with A(l would not in itself demonstrate the utility of the I'I" At least two
more tools would be required to perform some sort)I' demonstration.

7.1 Tool Selection

There were several tools in the repository which could perform operations on Ada
source code. These included editors, spelling checkers, Ada statement counter. and
Ada source cOdC reformatters. Since programnrcr's spend much of tho'ir tiimc using
text editor., it scemed that a natural choice for a demonstration would c(')oe which
extended the functionalit, of t text editor through integration with other text pro:es,,ing
tools. 'hus, a demonstration was conceived in which an editor would be the primary
tool interfacim with the u.scr and would be integrated with other text proce.ssing tools
operating a, servers through a connection center. This scenario seemed to provide a
relatively straight-forward demonstration.

A simple line editor, written in Ada. was chosen from the repository. Although it is
unlikely that this particular editor would be a heavily used tool in an actual SIFF, the
same types of extensions could be made to the more popular varieties of screen editors.
For purposes,, ol the demonstration, additi. .1 commands were added to the editor
which would be carried out through a connction center. In particular, new commandt,
to rel'ormat and to count ,,tatements in Ada source coLC being edited were addcd. These
new commnLds cause the content, of" the current editor buffer to be transmitted to other
tools via a connection center and a reply to be received by the editor.

An Ada source code rc'ormatter wa.,, selected from the repository. There were at least
two choice.,,. 'lh,: sipier and smaller reformatter was chosen. Initially. a spelling
checker was also selected as , a server tool for the demonstration. H fowever. a, time
began to run out it wa,, decided to replace the spelling checker with a simpler t,,l. an
Ada statement comnter. to reduce the risk ol" not meeting schedules. The main reasons
for the ,,.ub.titution ts that the spelling checking hd a very long startup time and its
user interface secmId complex. It wa, not clear ho,\ much effort would be required to
adapt it for an acceptable dcmnstratioi.

Inter-''l (C 'om m unication F:iial Report
I)13-2127) 13

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D613-21270

In order to demonstrate the broadcast and reply conicatenation capabilities of the
IT('I, another simple command was added to the line editor. This command causes a
mesisagc to be sent to all clients of a connection center which have registered
themselves as servcr tools. Each tool responds with its registered name. These
rc.sponse. are concatenated into a single stream by the connection center and delivered
back to the editor which prints the response. Hence, the net affect of the this new
editor command is to poll for the names of all available server tools which arc
connected to the center.

7.2 Tool Adaptation

Adaptation of the tools cho,,en for integration via the I'I'C" was straight-forward. In
the case of the line editor, the new commands were readily added. l lowever, the
command for reformatting suggested that another editor extension would be nece.sary.
The problem i.,, that if there are mistakes in the source code. the result,, of reformatting
could be crroncous in which case the user may wish to re.store the prior contents of the
editor buffer in place of the reformatted content.,. The mechanism used by the editor
to store the text being edited was easily modified to handle two text buffer.,, in,,tead of
one. Another command was added to the editor which allows the user to toggle
betwecn the,,c i)ufers." Thus, after a buffer i.,, formatted the user has the option of
svitching back to the original text buffer as it was lefore invoking the reformatter.

Both the reformatter and the Ada statement counter tools were ea.sily adapted since
they already used TEX'-IO for purposes of input and output. Adaptation of these
tool,, was largely a matter of adding a few calls to the TC[package Connection.
l:.ach tool had to perform the following initialization steps:

. ('all Open_('onnection to initialize the connection to the connection center.

2. ('all RegisterPattern to register the identification of the tool with the connection
center.

3. C'all ActivateConnection to notify the connection center that the tool was ready
to receive request streams.

-IThereafter. the tool.s would call the Receive interface in package C ()nnection to receive
cach strcam containing source code to be processed. 'he too, Would then open each
stream using TI-X1SI,'AMO. Since these tool, already used "I' XT_() to read

their input and write their output. the TI' X'I'_I() calls had only to be changed to call
'Tl-X'IS'I'IRlIAMI() instead.

MIorc detailed information about the changes madie it) tool., for adaplation canl he found
in the Ada source code files for the tools

Inter-'i'ool C'omnunication Final Report
DO 13^-2127(1 14

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D613-21270

7.3 Tool Adaptation Problems

Although the changes necessary to integrate the tools with the ITCF were minor, other
aspects of tool behavior became important in the context of integration. This was
particularly evident in the reformatter tool. 'Ihe reformatter, as it was written, would
stop processing if it encountered anything which is not correct Ada in its input stream.
While this sort of behavior may be acceptable in a stand alone tool, in an integration
setting it seemed counter-productive. If' the user sent his editor buffer to the
reformatter, only part would come back in the (very likely) event that the source code
contained errors. Hence, changes were made to the reformatter to cause it to pas,
remaining source code through unchanged in the event of a syntactic error from which
it could not recover.

The reuse of tools such as the reformatter in this way increases the need for tool
reliability. While octasional failures of a stand-alone tool may bc' tolerable, the
failure of a tool in a closely integrated scenario may not be so well tolerated. i'or
example, an obvious and implied extension of the demonstration scenario would be the
multiplexed use of the connection center and the server tools (the reformatter and the
statement counter) by .several independent invocations of the editor tool. That is, the
services provided by the connection center could be provided to multiple independent
users. In this case, if one user sends an sourqe program to the refou'mattvr which
causes it to abort, then the facility is also lost to the other' users of tle connection
center.

Hence, the robustness of tools becomes more critical. It may be that future
adaptations of tools to the I'CF should include considerations such as restarting a tool
if it fails. At the very least, when one tool fails, other tools connected to connection
center should not necessarily fail as a consequence.

7.4 Tool Adaptation Effort

Much of the effort that was necessary to adapt the reformatter was spent in trying to
fix existing weaknesses and make it more robust. There are still existing bugs in this
tool which could not be fully investigated in the time available. Approximately a two
man-weeks of effort were applied to this tool.

Adaptation of the Ada statement counter wa.s trivial, requiring only a few hour.,. It
was only necessary to add a main processing loop.

Adaptation of the line editor wa.s fairly straight-forward. Some knowledge of it,
internal structure wits nece.ssary in order to add the new command,, and to add the
capability of multiple buffer.s which could be .swapped via at command. The editor
adaptations required approximately a man-we.ek.

hIter-Tool C omntilication I'inal Report
I)o 11-2 1270 15

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D613-21270

Note that all adaptations were performed by a prograh~mer familiar with tile IT'CI
intcrfacc.,, but completel unfamiliar with the tool, being integrated. No consultation
from other,, was sought in performing the adaptations. Realistically, this situation (no
consultation) probably reflect.,, typical future tool adaptation ,cenarios. Hlowever,
those with cxpCrtisC in these tools could have performed the necessary adaptations
more quickly.

7.5 Instantiation of tile l)emonstration Connection Center

['or flexibility, IT'CI" connection center software is provided in the form of generic
package-s which must be instantiated by the user to create a connection center having

.the desired distribution strategy. The connection center instantiations used in the
demon,,tration are in a package called IntegrationCenter. The actual parameters for
the in:.tantiation include an Ada type defining pattern., and a matching function which
compares ,,treams to be distributed against patterns. The Integration_Center package
defines patterns to be ,,implc strings up to 20 characters long. These strings are the
names of the server tools" connected to the Integration_('cnter, e.g. "l"ormatter" and
"Ada Count". Reque.sts sent by the line editor to the connection center have a header
which indicates which tool is to receive the stream. A stream with the header "*" is
sent to all of the server tool, connected. The "*" header is used to implement the editor
comand which poll, tile server tools connected tq.:the connection center. *.

The implementation of the IntegrationCenter has relatively simple since most of the
work is already taken care of in the of bodies of the generic packages. I However,
instantiation of package Distribution is non-trivial, requiring a detailed understanding
of how to distribute call streams and how to concatenate their corre.,ponding reply
stream.,. The proce.,, of making a connection center couldl be made substantially easier
by providing a higher-level generic package which would automatically instntiate the
package Distribution with a standard distribution strategy.

7.6)emonstration Performance Results

Responsiveness of the Special editor commands was found to be fairly good once all
tool. and the connection center were established and initialiIed. 'ypic.al re.pon.e times
for small editor Ibfl'cr.,, i.,, one or two seconds. However, the initial establi.,,hment of the
connection ;enter and the tools is fairly lengthy primarily due to the many node
creation Operation, perlormed by the ('AiS-A implementation in creating the
proce,,sc, and 10 cLannel., (.,,ix node, are created for the demonstration conl'iguration).
It is expected that these creation time,, will be much shorter in future. improved
releases of the CA IS-A implementation.

Performance wa." ignil'iLantly porer when large streams were transmitted. A three
page source file can take on the order of 20 seconds to be reformatted. The
computational overhead for stream management is relatively low. The appaten Cause
of the performance problem with large streams is the use of polling in the lo\x -le,.el I0

Inter-To)l Communication IFinal Report
)613-21 27() I0

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 1)613-21270

mechanism. It is likely that performance would be' much better if this polling

mechanism were replaced with an interrupt-driven 10 mechanism.

7.7 Running the l)emonstration

The followkin- steps may be used to run the demonstration on the 3oeing MI)SC VAX:

1. iLogon as user SO;H.CIiI, password GREINI.

2. Type: RUN U03.J:CA1SI,0G0N to logon to the CAIS. Specify user
ITCIE_-)ilMO. password ITC.-DI.,MO.

3. Wait for the prompt "file?". This may take a minute.

4. l'ype the name of a VMS file to read into the buffer;

or,

5. Type a carriagq return to start an empty buffer.

6. Type "I" (h3vlp) and "S" (summary) for an editor command summary.-

7. Type "A" (append) to enter an Ada program from the keyboard. Type "." (R
to end input mode.

8. Type "L" (list) "A" (all) to list the editor)uffer contents.

9. 'l'ype "C" (center) to poll the tools connected to the IT('F connection center.
The names of the tools will be printed.

10. Type "Z" to send the editor buffer to the Formatter tool. A new buffer will be
returned.

I 1. Type "B" tb.'ffl'er switch) to toggle back to the unformatted buffer.

12. "''ypc "K" to .. de editor bulfer to tile Ada statement counter. The number of
Ada statements. blank lines, comment lines etc. will be printed.

!1'. If ('()N'I'R()l-Y must be typed, rel'resh the database before loggin,, into the
('AI. again, as follows:

Type (')NTR)I .- Y
Type STO'(P
Type @ l,-l;l~lzl-SI[

Inter-Tool Communication Final Repoi'
D613-21270 17

CDRL 01270 The BOEING Company CDRL 01270
TASK iiR67 D)61 3-21270)

8. UN IMPI JMI NIlI) FE ATURE S

Not all features of the IT(TIwere implemented under this task. Only the core facilities
required for thc dernonstrd tion were fully implemented. In particular.. the f'ol lowing
Vl'(F packa. ,r not implemented:

pm"k. -, '~Strean-10.I - protocol for transmitting Ada dlata structures in a
,-o,., y form.

Packag- Sequential-..Strearn_10 - an ITlCF' version of' Ada's SequentialO.

Packa, - ,I-ssage-10 - atgnei package for the convenient encoding and
decodh.- A' short streamis.

Also, the capability to connect together several connection centers was not
implen..iited. T1his featur:2 i.s useful primarily in the implemeritalon connections,
b)etwveen different host~s. e.g-. it) support remnote p. ocedure calls among a network of
loosely coupled hosts.

I nte-l~ C om munication IFinal Report
1)0 13 -2112 70 Is

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D61 3-21270

9. CONCLUSIONS AND) IJSSONS IJARNFI)

[his successful implementation and demonstration of the IrCF pr~oves that thle ITr(T
Concept is workallc and that it h1,1. Practical atpplications. Althoughi thle demnonstration
tool., (espccialy thle line editor) ri.,!y no! be heavily used in at real SI ~l i. thle same
print.Aples applied to adapt these tools could be a pplied to more popular screen editors
and more sophisticated source ref orniatters and other source analysis tools.

T1he extension (it at tool (such as anl edito.) through exploitation of thle functionality of
othecr tools certai nly appear., worth pursuing. Such exteil.SiOnN Of functionality through
it-, egration 01' independent tools:. has several advantages,. Inl the sample demonstration,
tool functionality is made more ..ccessible to the: user. Without thle use of l'lCF
intecuration. the user wishing to iclormat his source program (under dlevel opment) is
forced to exit theC editor. type at -lngthy command to in'"wke thle reformatter specifying
the location of the programn to Ile reformatted and the location for the resulting- Output
(Which maly bC As~ucuntly discarded). The user must examine the results and then
re-invoke theC CItor, to Continue development of the source program. Such obstacles to

tol sge (ir~ this, ca-se the use of the reformatter)relkytoeveuctos
underutiliz.ed or even pinutilized. Onl the other hiand, with integration througlh the ITCF,
the reformatting function b~ecome,, immediately available without exitinlL, thle editor.
Olnly at simple ctrndild need be typed; the souirce is reformatted an. imm~edfiately
avail able for further inspection and editing.

-, Similarly, at user of the editor may wish to know if hie has ex~ceeded the source code
de 0pmenlt g-uidelines of his project (which require that Ada procedures contain less
tha 150 statements,) as. hie is, actualily typing the procedure. If ' thle user must exit thW'
editor session in order to use the Ada -otement cojjnter tool. then the statement
counter tool will be much less useful to him.

In addition to the user convenience which ITlCF itgr mayl provide. there are
other advantages. ToolsN which are integrated through the -still independent of
one another. They call be linked and maintained indep "xfently of one another.
Separately linked tools, Integrated through rrmr occupy less memory than would lbe
required it' the: tools were integratin'1) ylnigte into common memory imagels.
Moreover, dIuC tO nam11ing conflicts in independently developed tool.,. such linking is not
ali vltyF f)ossibic

When at Ahared connction center with server tools; is, used by several user.N. eaci1 server
tool is represented a., at single. serialily reusable process. This hits sever-al advantages.

The tool imagesN (even if nonl-rceentrant) are repi t'SCente Only once in mernor. T he
number of protcesses. which miust be managed by tht: underlying system is sniallr. Thle
tool liagesN (1re not reloaded from disk, each time they are invoked. The tool
elaboration and othecr tool initialization is performed only once for all user.

Inter -Tool ComunT~Iiicationl Fi:nal R~eport fC

l1) 13-2 12 -(0)

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D)613-21270)

A typical problem in shared processing environnieiits is the ue ol larg,
resourcc-intensivc tool,, (such as an Ada compiler) by ';cvkral us ers concurrently.
Sometimes as few as two concurrent invocations of such tool% can drastically reduce
systemn tnrough-put due to contention for memory, proces.ing. anld 10 resources. TIhe
ITCI'*I can be used (as demonstrated) to conveniently serializec access, to- such tools in
order to maximize through-put in these types ol environments. [or example, a
common connection center could used Iby all Cl .1 processes to serialize the use of the
compiler and othiur tool,

I nter-Tool C omnmunication F inal Rcpori
D)613-2 1270) 20

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D613-21270

10. FUTURE APLICATI'ONS

The connection center and other concepts employedl inl the ITCF are relatively ne%.
The potential applications are a., yet not fully defined. T1he .Iesign and implementation
of the IT1CF have lbeen dlone with flexibility uppermost in order that The potential of
this tool not be limited to specific integration scenarios that happened to be envisioned

bthe ITCF designers and implementers.

Other practical application scenarios should lbe investigated as !ie STARS progra in
continues.. There may be many its yet uni nvesti ga ted applications. One path ttma rd
wider application would be to make the ITC]" fa cilities more rceadily available at the
Command Line Interpreter level of' the environment. This could be accompliShed by
implementing the ITCI' mechanlisms which support RPC (remote procedure call) and
then integrating the IT1CV* functionality into ACI (the Ada Command Environme nt).

Another area for application ol' the l'VCI could be application program (level opmicnt
and testin~g. The use of software-first methodologies will lead to the need to test
application software within the software (level op rrn t environment before the ta rt
hardware is available. Many applications to be developed are real-time systems.
utilizing- tasks that respond to incoming "st' ams" of environmental data. Tlhere is
clearly potential here to use the UIT' to create simulated environments alld to M011nit1"
and record responses. There is even thc possib1)ility of direct use of .IT(P stream
management facilities' inl thle applications themselves as a means of efficient inter-ta~k
communication and transient data management.

In1ter -Tl l C illnLillica tHol Fi nal Report

STARS Task BR-67
Inter-Tool Communication Facility (ITCF)

Final Report
13 February 1990

1. Introduction

The Inter-Tool Communication Facility (ITCF) was specified under.STARS Task
Q11. A VAX/CAIS-A implementation of the core ITCF facilities, a
demonstration of the ITCF using existing tools, and this final report were
completed under STARS Task BR67. This reports describes the ITCF, the
design, the implementation, and the demonstration performed. More detailed
documentation and information about the ITCF and the demonstration tools
can be found in the ITCF Version Description and in the source code for the
ITCF packages and for demonstration tools. All ITCF deliverables including
source code and reports are currently on the MDSC VAX under the root
directory:

SYS$USER7[SOFTECHI.USERS.SABBUHL. ITCF]

The file:

SYS$USER7[SOFTECHI.USERS.SABBUHL.ITCF]ITCFVERSIONDESCRIPTION.ADS

describes the directory organization of the deliverables.

2. General Description

The following is a general description of the ITCF. More details can be
found in the file ITCFVersionDescription.ads and in the package
specifications and bodies for the delivered software.

The ITCF permits concurrently executing tools to cooperate in an integrated
manner while maintaining their high degree of modularity and functional
independence. The ITCF offers a layered architecture of communication
services which may be adapted to meet the requirements of a variety of tool
integration strategies. The principle conceptual layers are streams, stream
protocols and messages.

The ITCF services manage the complex details of inter-tool communication
and provide conceptually simple and easy to use interfaces to the tool
writer. These services facilitate the integration of tools with relatively
modest effort, including existing tools which were not originally designed
to use the ITCF packages.

The ITCF is intended to transfer data which is primarily transient in
nature as opposed to data which is permanently stored in the environment
data base. Permanent data should be handled through the environment object
management system. Nevertheless, simple tools can be implemented, using
the ITCF packages, which allow the connection of other tools to files
(including devices) as sources and sinks for inter-tool data.

The ITCF is also intended to support communication between tools executing
in different CAIS-A environments that are connected by a gateway. However,
this feature was not implemented under task BR67.

3. ITCF Concepts

The underlying concepts of the ITCF have been derived from a number of
sources. These include UNIX pipes, plumbing fixtures and filters; the
CAIS-A TO Connection Model; apd various Remote Procedure Call (RPC)

facilities and stream manipulation packages. The FIELD environment
integration mechanism, described by Steven Reiss of Brown University, was
particularly influential.

3.1 Clients and Connection Centers

The focus of ITCF operations are server processes called connection
centers. A given connection center may have one or more clients. A client
may be a tool (i.e. a process), or a gateway. A gateway client represents
other clients and/or connection centers on a remote host system. Clients
communicate with one another via the connection center.

The first step in using the ITCF is the creation of a connection center.
After the center has been created, clients may be connected to the center.
Connection of a client to a connection center establishes a communications
channel between the client and the center. This channel is called a
connection. Clients may be connected or disconnected at any time. Only
clients of the same center may communicate with one another. Each client,
may be connected to only one center at a given time. Clients may
communicate through the connection center concurrently.

3.2 Streams

At the lowest conceptual layer of the ITCF, data is passed through the
connection center in the form of streams. A stream is simply a sequence of
data (of indefinite length) generated by a client. A client sends data by
writing into a stream. A client receives data by reading from a stream.

The flow of data in a stream is uni-directional. When bi-directional flow
is required, a reverse stream called a reply stream may be used. A client
process may use multiple streams concurrently. The flow of data in each
stream is independent of other unrelated streams.

Streams may be used by processes for direct communication without the use
of a connection center. Connection center facilities are built on top of
the lower-level stream services. Streams may also be used locally within a
process for communication between tasks without the overhead associated
with sending streams through a separate connection center process.

4. Implementation Overview

The core facilities of the ITCF were implemented on the MDSC VAX machine
using VAXAda 2.0 and Version 4.5 of the CAIS-A implementation. The ITCF
services are provided as a collection of packages containing interfaces
which may be called by CAIS tools.

The principal packages implemented are:

-StreamIO - Supports all low-level stream operations
including interprocess communication.

TextStreamIO - Provides the interfaces of Ada TextIO for
reading and writing stream data.

Connection - Provides interfaces that client tools call to
interface with a connection center.

ConnectionCenter - A generic package which supports the
instantiation of user defined connection
centers.

Distribution - A generic package which performs general
distribution list management functions for

instantiations of package ConnectionCenter.

Monitor - A low-level packages which is used to manage
concurrent access to streams. This is an
internal ITCF package which contains no tool
interfaces.

5. Design Problems and Solutions

Aspects of the ITCF implementation which presented significant technical
challenges were the management of concurrent access to streams and the
interprocess connection resources, and the mechanism to support stream
copying. Stream copying is a fundamental ITCF concept of substantial power
in affecting the distribution of streams and the composition of streams
from other streams.

5.1 Concurrent Access to Streams

Two problems needed to be addressed in the handling of concurrent access.
The first was to develop a conceptual model that would make a correct
implementation conceptually manageable. The second problem was to assure
that management of concurrent access would be reasonably efficient.

5.1.1 Using Ada Rendezvous

Initial attempts to achieve a conceptual model for concurrent access were
focused on the direct use of the Ada rendezvous model. One question was
how tasking should be applied. The Ada rendezvous model is generally
applied by identifying a object to which concurrent access may occur and
then applying a task to manage the object. All access to the object is
then accomplished through calling entries to that task. Hence, one attempt
to the solve concurrent access problems in the ITCF was to have each stream
be managed by a separate task. This approach was eventually rejected
because it would require a large number of tasks, straining system
resources. Also, it was not clear how stream copying could be implemented.
Stream copying would either require 1) stream-tasks to call other
stream-tasks, thereby making themselves unavailable for satisfying other
concurrent access to the z'ream, or 2) the creation of addition copy-tasks
that would simply read data from one stream-task and write-data to another.
While such tasks could be recycled, thus reducing the overall overhead of
frequent task creation, the number of tasks that would be required was
still of some concern.

Another approach to using rendezvous was to define a single task which
provides all services to all streams. This task would serialize access to
all stream operations. W.hile this approach would greatly reduce the number
of tasks required, it had some disadvantages. One disadvantage was that
all stream functions would have to be provided in a single large task body.
In order to modularize these functions, calls would have to be used in the
ACCEPT statements of this task body adding additional overhead (which could
possibly be reduced through the use of PRAGMA INLINE). Also, how to
interface with other tasks which manage transmission of streams over
connections was not clear.

While these problems probably could be overcome, there was one problem that
was shared by all approaches that used Ada rendezvous exclusively: every
operation on a stream would involve four tasks switches. Task switching
has certain unavoidable overhead even in the best Ada runtie
implementations. All registers must be stored and loaded, and the
scheduling algorithm must be invoked. This would imply that an operation
which is to write a sinale byte to a stream could have an overheal an the
order of a hundred instrictionS. Thit overheoa creild be siqnificantly
redtice by u:in1q b fferins to minrimize th- n,'in i .4 rerirlo, i r.4r ir&J tc,

transmit a given amount of data. However, this would only help in the Put
and Get functions in package StreamIO. The overhead for all other
functions would not be reduced.

5.1.2 Using Monitors

An alternative approach was to apply Hoare's Monitor concept. In this
approach, the set of all streams is considered a shared resource to which
access is control via a monitor entity. Whenever a task needs to operate
on a stream, it must first enter the monitor. Monitor entry i7 queued so
that only one task can execute within the monitor at a time. If the
operation cannot be completed immediately (for example an attempt to read a
stream which is temporarily empty), the task may suspend itself on a
condition variable until the operation can be completed. When a task
suspends itself within a monitor, another task is allowed to enter.
Eventually, a task will enter which writes to the stream and signals the
condition variable upon which the suspended task is waiting.

5.1.3 Monitor Implementation

The monitor framework was very helpful in sorting out the concurrent access
problems. However, since Ada does not directly support monitors, it was
necessary to consider how they would be implemented. Waiting must occur
when a task attempts to enter a monitor, if another task is using the
monitor, and when a task must be suspended on a condition variable. In Ada,
the only way for a task to wait until some event occurs is through a call
to a task entry. A very simple and direct approach to the monitor entry
problem is to use a simple task which alternately accepts an entry call to
enter the monitor and an entry call to leave the monitor. The major
drawback to this solution is that the cycle of entering and leaving the
monitor would require two rendezvous involving eight task switches.

However, an important observation is that, in most cases, when a task
attempts to enter the monitor there will be no task executing in the
monitor. Thus, in most cases a rendezvous should be unnecessary. In the
ITCF implementation, a counter which can be incremented/decremented and
tested as an atomic operation is used to determine whether a task is
currently executing within the monitor. A rendezvous is used to suspend an
entering task only if the result of incrementing the counter indicates that
another task is already executing inside the monitor. This strategy
reduces the overhead of monitor entry and exit to a few instructions,
versus the hundreds of instructions that would be executed using rendezvous
exclusively.

The technique used could be criticized for not being pure Ada. However,
the only implementation dependency introduced by this technique is the
implementation of the atomic counter on the host. Most processors have
such an instruction. Others have an instruction (such as a test and set)
which can be used to synthesize an atomic counter. !a the case of the VAX,
the VAXAda compiler has a built-in procedure for an atomic counter. For
other hosts or compiling systems, it may be necessary to write a small
assembly language unit.

In any case, the dependency is isolated within a small package called
Protected Counter. There is no dependency on the Ada run-time
implementation. All tasking operations are still handled in pure Ada.

5.2 Strea Copying

Several false starts were required in the design of stream copying before a
satisfactory solution war arrived at. The final solution was to place an
item representing the 'tail" (i.e. the remainder) of a copied stream in the
item queue of every target stream to which the stream is copied. These

tails are kept on a list. Each time another data buffer is added to the
source stream, an item referencing that buffer is inserted into each target
stream immediately ahead of each tail (in the list of tails) for the copied
stream. This effectively copies the data into each target stream at the
appropriate point within each of those streams. When the copied stream is
closed, the tails are discarded since no further insertions of data from
the copied -ream are necessary.

In applicat.ins involving large streams, the amount of data which is
buffered in a stream must be bounded to prevent storage resources from
being exhausted. Handling of bounded buffering in streams was problematic
due to the copying facility. Initial, it was not clear how to account for
buffered data which has been copied. As the design of the copy capability
progressed, it was decided that buffers would be copied by reference rather
than by value for efficiency reasons. The accounting problem of placing
bounds on buffering was then solved by designating the stream to which data
is originally written as the owner of that data. Thus, copying a stream A
to a stream B has no affect on the amount of data that can be written
directly to stream B. A shared buffer is only released after every
reference to it in any stream has been deleted. Thus, write operations to
stream A which has been copied to stream B may be blocked until data is
read from both streams A and stream B.

6. Changes to the Original Design

Few changes were made to the ITCF specifications during the implementation.
However, one significant change was a redistribution of the functionality
provided by the packages Stream 10 and Stream Services. During the
implementation it was realized that the underlying stream services (which
were not detailed in the specification) could be useful outside the context
of ITCF connection centers. Thus, interfaces originally intended to be
hidden in the implementation of StreamServices were instead made a visible
part of package Stream 10. Thus, package Stream 10 now provides full
access to low-level stream functionality. Package StreamServices was
eliminated.

Higher-level functionality, associated specifically with the use of a
connection center, was removed from package Stream_10 and placed in package
Connection which already included interfaces through which client processes
communicate with a connection center. (One regret here is the package name
Connection which would more appropriaLely be Center_10. This could be
fixed in a future version.) The rearrangement of these services improves
ITCF modularity since general-purpose stream services (provided by
Stream 10) can now be used without the overhead of also binding-in
connection center support.

7. Demonstration of the ITCF

The selection of a demonstration for the ITCF was a compromise between the
desire to demonstrate a meaningful, non-trivial ITCF application and the
need to devote most of the available time to the implementation of the
ITCF. A meaningful demonstration would be one in which the functionality of
the existing tools is integrated. The repository containing STARS and
SIMTEL tools was considered as the primary source of existing tools. In
order to minimize the risk of demonstration problems, attention was focused
on relatively simple, small tools. A demonstration of the ability to
integrate tools was of more interest than the tools themselves. For
example, integration of the ITCF with ACE (Ada Command Environment) was
considered but was not undertaken, primarily because ACE is large body of
software which would have had to be ported from a UNIX environment to
CAIS-A on a VAX. Also, the integration of ITCF with ACE would not in
itself demonstrate the utility of the ITCF. At least two more tools would
be required to perform some sort of demonstration.

7.1 Tool Selection

There were several tools in the repository which could perform operations
on Ada source code. These included editors, spelling checkers, Ada
statement counters and Ada source code reformatters. Since programmer's
spend much of their time using text editors, it seemed that a natural
choice for a demonstration would be one which extended the functionaliPy of
a text editor through integration with other text processing tools. Tnus,
a demonstration was conceived in which an editor would be the primary tool
interfacing with the user and would be integrated with other text
processing tools operating as servers through a connection center. This
scenario seemed to provide a relatively straight-forward demonstration.

A simple line editor, written in Ada, was chosen from the repository.
Although it is unlikely that this particular editor would be a heavily used
tool in an actual SEE, the same types of extensions could be made to the
more popular varieties of screen editors. For purposes of the
demonstration, additional commands were added to the editor which would be
carried out through a connection center. In particular, new commands to
reformat and to count statements in Ada source code being edited were
added. These new commands cause the contents of the current editor buffer
to be transmitted to other tools via a connection center and a reply to be
received by the editor.

An Ada source code reformatter was selected from the repository. There
were at least two choices. The simpler and smaller reformatter was chosen.
Initially, a spelling checker was also selected as a server tool for the
demonstration. However, as time began to run out it was decided to replace
the spelling checker with a simpler tool, an Ada statement counter, to
reduce the risk of not meeting schedules. The main reasons for the
substitution was that the spelling checking had a very long startup time
and its user interface seemed complex. It was not clear how much effort
would be required to adapt it for an acceptable demonstration.

In order to demonstrate the broadcast and reply concatenation capabilities
of the ITCF, another simple command was added to the line editor. This
command causes a message to be sent to all clients of a connection center
which have registered themselves as server tools. Each tool responds with
its registered name. These responses are concatenated into a single stream
by the connection center and delivered back to the editor which prints the
response. Hence, the net affect of the this new editor command is to poll
for the names of all available server tools which are connected to the
center.

7.2 Tool Adaptation

Adaptation of the tools chosen for integration via the ITCF was
straight-forward. In the case of the line editor, the new commands were
readily added. However, the command for reformatting suggested that
another editor extension would be necessary. The problem is that if there
are mistakes in the source code, the results of reformatting could be
erroneous in which case the user may wish to restore the prior contents of
the editor buffer in place of the reformatted contents. The mechanism used
by the editor to store the text being edited was easily modified to handle
two text buffers instead of one. Another command was added to the editor
which allows the user to toggle between these buffers. Thus, after a
buffer is formatted the user has the option of switching back to the
original text buffer as it was before invoking the reformatter.

Both the reformatter and the Ada statement counter tools were easily
adapted since they already used TEXT_10 for purposes of input and output.
Adaptation of these tools was largely a.matter of adding a few calls to the
ITCF package Connection. Each tool had to perform the following
initialization steps:

1. Call Open_Connection to initialize the connection to the connection
center.

2. Call RegisterPattern to register the identification of the tool
with the connection center.

3. Call Activate Connection to notify the connection center that the
tool was ready to receive request streams.

Thereafter, the tools would call the Receive interface in package
Connection to receive each stream containing source code to be processed.
The tools would then open each stream using TEXTSTREAMIO. Since these
tools already used TEXT_10 to read their input and write their output, the
TEXT IO calls had only to be changed to call TEXTSTREAMIO instead.

More detailed information about the changes made to tools for adaptation
can be found in the Ada source code files for the tools.

7.3 Tool Adaptation Problems

Although the changes necessary to integrate the tools with the ITCF were
minor, other aspects of tool behavior became important in the context of
integration. This was particularly evident in the reformatter tool. The
reformatter, as it was written, would stop processing if it encountered
anything which is not correct Ada in its input stream. While this sort of
behavior may be acceptable in a stand alone tool, in an integration setting
it seemed counter-productive. If the user sent his editor buffer to the
reformatter, only part would come back in the (very likely) event that the
source code contained errors. Hence, changes were made to the reformatter
to cause it to pass remaining source code through unchanged in the event of
a syntactic error from which it could not recover.

The reuse of tools such as the reformatter in this way increases the need
for tool reliability. While occasional failures of a stand-alone tool may
be tolerable, the failure of a tool in a closely integrated scenario may not
be so well tolerated. For example, an obvious and implied extension of tile
demonstration scenario would be the multiplexed use of the connection center
and the server tools (the reformatter and the statement counter) by several
independent invocations of the editor tool. That is, the services provided
by the connection center could be provided to multiple independent users.
In this case, if one user sends an source program to the reformatter which
causes it to abort, then the facility is also lost to the other users of
the connection center.

Hence, the robustness of tools becomes more critical. It may be that
future adaptations of tools to the ITCF should include considerations such
as restarting a tool if it fails. At the very least, when one tool fails,
other tools connected to connection center should not necessarily fail as a
consequence.

7.4 Tool Adaptation Effort

Much of the effort that was necessary to adapt the reformatter was spent in
trying to fix existing weaknesses and make it more robust. There are still
existing bugs in this tool which could not be fully investigated in the
time available. Approximately a two man-weeks of effort were applied to
this tool.

Adaptation of the Ada statement counter was trivial, requiring only a few
hours. It was only necessary to add a main processing loop.

Adaptation of the line editor was fairly straight-forward. Some knowledge

of its internal structure was necessary in order to add the new commands
and to add the capability of multiple buffers which could be swapped via a
command. The editor adaptations required approximately a man-week.

Note that all adaptations were performed by a programmer familiar with the
ITCF interfaces but completely unfamiliar with the tools being integrated.
No consultation from others was sought in performing the adaptations.
Realistically, this situation (no consultation) probably reflectZ typical
future tool adaptation scenarios. However, those with expertise in these
tools could have performed the necessary adaptations more quickly.

7.5 Instantiation of the Demonstration Connection Center

For flexibility, ITCF connection center software is provided in the form of
generic packages which must be instantiated by the user to create a
connection center having the desired distribution strategy. The connection
center instantiations used in the demonstration are in a package called
IntegrationCenter. The actual parameters for the instantiation include an
Ada type defining patterns and a matching function which compares streams
to be distributed against patterns. The IntegrationCenter package defines
patterns to be simple strings up to 20 characters long. These strings are
the names of the server tools connected to the IntegrationCenter, e.g.
"Formatter" and "Ada Count". Requests sent by the line editor to the
connection center have a header which indicates which tool is to receive
the stream. A stream with the header "*" is sent to all of the server
tools connected. The "*" header is used to implement the editor command
which polls the server tools connected to the connection center.

The implementation of the IntegrationCenter was relatively simple since
most of the work is already taken care of in the of bodies of the generic
packages. However, instantiation of package Distribution is non-trivial,
requiring a detailed understanding of how to distribute call streams and
how to concatenate their corresponding reply streams. The process of
making a connection center could be made substantially easier by providing
a higher-level generic package which would automatically instantiate the
package Distribution with a standard distribution strategy.

7.6 Demonstration Performance Results

Responsiveness of the special editor commands was found to be fairly good
once all tools and the connection center were established and initialized.
Typical response times for small editor buffers is one or two seconds.Howe-ver, the initial establishment of the connection center and the tools

is fairly lengthy primarily due to the many node creation operations
perforf- by the CAIS-A implementation in creating the processes and 10
channels six nodes are created for the demonstration configuration). It
is expected that these creation times will be much shorter in future,
improved releases of the CAIS-A implementation.

Performance was significantly poorer when large streams were transmitted. A
three page source file can take on the order of 20 seconds to be
reformatted. The computational overhead for stream management is relatively
low. The apparent nause of the performance problem with large streams is
the use of polling in the low-level 10 mechanism. It is likely that
performance would be much better if this polling mechanism were replaced
with an interrupt-driv,-bn 10 mechanism.

7.7 Running th Demonstration

The following stevs may be used to run the demonstration on the MDSC VAX:

1. Logon as user SOFTECHI, password GREENE.

2. Type: RUN UOBJ:CAISLOGON to logon to the CAIS.

Specify user ITCFDEMO, password ITCFDEMO.

3. Wait for the prompt "file?". This may take a minute.

4. Type the name of a VMS file to read into the buffer
or

6. Type a carriage return to start an empty buffer.

7. Type "H" (help) and "S" (summary) for an editor command summary.

8. Type "A" (append) to enter an Ada program from the keyboard.
Type "." CR to end input mode.

9. Type "L" (list) "A" (all) to list the editor buffer contents.

10. Type "C" (center) to poll the tools connected to the ITCF
connection center. The names of the tools will be printed.

11. Type "Z" to send the editor buffer to the Formatter tool.
A new. buffer will be returned.

12. Type "B" (buffer switch) to toggle back to the unformatted
buffer.

13. Type "K" to send the editor buffer to the Ada statement counter.
The number of Ada statements, blank lines, comment lines etc.
will be printed.

14. If CONTROL-Y must be typed, refresh the database before logging
into the CAIS again, as follows:

Type CONTROL-Y
Type STOP
Type @REFRESH

8. Unimplemented Features

Not all features of the ITCF were implemented under this task. Only the
core facilities required for the demonstration were fully implemented. In
particular, the following ITCF packages were not implemented:

Package BinaryStreamIO - protocol for transmitting Ada data
structures in a compact binary form.

Package SequentialStreamIO - an ITCF version of Ada's SequentialIO.

Package Message_IO - a generic package for the convenient
encoding and decoding of short streams.

Also, the capability to connect together several connection centers was not
implemented. This feature is useful primarily in the implementation
connections between different hosts, e.g. to support remote procedure calls
among a network of loosely coupled hosts.

9. Conclusions and Lessons Learned

This successful implementation and demonstration of the ITCF proves that
the ITCF concept is workable and that it has practical applications.
Although the demonstration tools (especially the line editor) may not be
heavily used in a real SEE, the same principles applied to adapt these
tools could be applied to more popular screen editors and more
sophisticated source reformatters and other source analysis tools.

The extension of a tool (such as an editor) through exploitation of the
functionality of other tools certainly appears worth pursuing. Such
extensions of functionality through integration of independent tools has
several advantages. In the sample demonstration, tool functionality is
made more accessible to the user. Without the use of ITCF integration, the
'user wishing to reformat his source program (under development) is forced
to exit the editor, type a lengthy command to invoke the reformatter
specifying the location of the program to be reformatted and the location
for the resulting output (which may be subsequently discarded). The user
must examine the results and then re-invoke the editor to continue
development of the source program. Such obstacles to tool usage (in this
case the use of the reformatter) are likely to leave such tools
underutilized or even unutilized. On the other hand, with integration
through the ITCF, the reformatting function becomes immediately available
without exiting the editor. Only a simple command need be typed; the
source is reformatted and immediately available for further inspection and
editing.

Similarly, a user of the editor may wish to know if he has exceeded the
source code development guidelines of his project (which require that Ada
procedures contain less than 50 statements) as he is actually typing the
procedure. If the user must exit the editor session in order to use the Ada
statement counter tool, then the statement counter tool will be much less
useful to him.

In addition to the user convenience which ITCF integration may provide,
there are other advantages. Tools which are integrated through the ITCF
are still independent of one another. They can be linked and maintained
independently of one another. Separately linked tools integrated through
ITCF occupy less memory than would be required if the tools were
integrating by linking them into common memory images. Moreover, due to
naming conflicts in independently developed tools, such linking is not
always possible.

When a shared connection center with server tools is used by several users,
each server tool is represented as a single, serially reusable process.
This has several advantages. The tool images (even if non-reentrant) are
represented only once in memory. The number of processes which must be
managed by the underlying system is smaller. The tool images are not
reloaded from disk each time they are invoked. The tool elaboration and
other tool initialization is performed only once for all users.

A typical problem in shared processing environments is the use of large,
resource-intensive tools (such as an Ada compiler) by several users
concurrently. Sometimes as few as two concurrent invocations of such tools
can drastically reduce system through-put due to contention for memory,
processing, and I0 resources. The ITCF can be used (as demonstrated) to
conveniently serialize access to such tools in order to maximize
through-put in these types of environments. For example, a common
connection center could used by all CLI processes to serialize the use of
the compiler and other tools.

10. Future Applications

The connection center and other concepts employed in the ITCF are
relatively new. The potential applications are as yet not fully defined.
The design and implementation of the ITCF have been done with flexibility
uppermost in order that the potential of this tool not be limited to
specific integration scenarios that happened to be envisioned by the
ITCF designers and implementers.

Other practical application scenarios should be investigated as the STARS
program continues. There may be many as yet uninvestigated applications.
One path toward wider application would be to make the ITCF facilities more
readily available at the Command Line Interpreter level of the environment.

This could be accomplished by implementing the ITCF mechanisms which
support RPC (remote procedure call) and then integrating the ITCF
functionality into ACE (the Ada Command Environment).

Another area for application ,f the ITCF could be application program
development and testing. The use of software-first methodologies will lead
to the need to test applicatio1 . software within the software development
environment before the target hardware is available. Many applications to
be developed are real-time systems utilizing tasks that respond to incoming
"streams" of environmental data. There is clearly potential here to use
the ITCF to create simulated environments and to monitor and.record
responses. There is even the jossibility of direct use of ITCF stream
management facilities in the applications themselves as a means of
efficient inter-task communication and transient data management.

STARS Task BR-67
Inter-Tool Communication Facility (ITCF)

Demonstration
13 February 1990

The demonstration tools, tool adaption, problems and results are all
documented in Section 7 of the ITCF Final Report. Demonstration
software can be found in directories under the following root
directory on the MDSC VAX:

SYS$USER7[SOFTECHI.USERS.SABBUHL. ITCF]

